
1

CS 188: Artificial Intelligence
Spring 2010

Lecture 6: Adversarial Search

2/4/2010

Pieter Abbeel – UC Berkeley

Many slides adapted from Dan Klein

1

Announcements

� Project 1 is due tonight

� Written 2 is going out tonight, due next Thursday

� Section

� OH

2

Today

� Finish up Search and CSPs

� Intermezzo on A* and heuristics

� Start on Adversarial Search

3

CSPs: our status

� So far:

� CSPs are a special kind of search problem:

� States defined by values of a fixed set of variables

� Goal test defined by constraints on variable values

� Backtracking = depth-first search with incremental constraint checks

� Ordering: variable and value choice heuristics help significantly

� Filtering: forward checking, arc consistency prevent assignments that guarantee
later failure

� Today:

� Structure: Disconnected and tree-structured CSPs are efficient

� Iterative improvement: min-conflicts is usually effective in practice

4

Example: Map-Coloring

� Variables:

� Domain:

� Constraints: adjacent regions must have
different colors

� Solutions are assignments satisfying all
constraints, e.g.:

6

Constraint Graphs

� Binary CSP: each constraint
relates (at most) two variables

� Binary constraint graph: nodes
are variables, arcs show
constraints

� General-purpose CSP
algorithms use the graph
structure to speed up search.
E.g., Tasmania is an
independent subproblem!

7

2

Tree-Structured CSPs

� Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d2) time
� Compare to general CSPs, where worst-case time is O(dn)

� This property also applies to probabilistic reasoning (later): an
important example of the relation between syntactic restrictions and
the complexity of reasoning.

8

Tree-Structured CSPs

� Choose a variable as root, order
variables from root to leaves such
that every node’s parent precedes
it in the ordering

� For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
� For i = 1 : n, assign Xi consistently with Parent(Xi)

� Runtime: O(n d2) (why?)
9

Tree-Structured CSPs

� Why does this work?
� Claim: After each node is processed leftward, all nodes

to the right can be assigned in any way consistent with
their parent.

� Proof: Induction on position

� Why doesn’t this algorithm work with loops?

� Note: we’ll see this basic idea again with Bayes’ nets

10

Nearly Tree-Structured CSPs

� Conditioning: instantiate a variable, prune its neighbors' domains

� Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

� Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

11

Tree Decompositions*

12

� Create a tree-structured graph of overlapping

subproblems, each is a mega-variable

� Solve each subproblem to enforce local constraints

� Solve the CSP over subproblem mega-variables
using our efficient tree-structured CSP algorithm

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) ∈
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
g
re

e
 o

n
 s

h
a
re

d
 v

a
rs

NT

SA

≠≠≠≠
WA

≠≠≠≠ ≠≠≠≠

Q

SA

≠≠≠≠
NT

≠≠≠≠ ≠≠≠≠

A
g
re

e
 o

n
 s

h
a
re

d
 v

a
rs

NSW

SA

≠≠≠≠
Q

≠≠≠≠ ≠≠≠≠

A
g
re

e
 o

n
 s

h
a
re

d
 v

a
rs

Q

SA

≠≠≠≠
NSW

≠≠≠≠ ≠≠≠≠

CSPs: our status

� So far:

� CSPs are a special kind of search problem:

� States defined by values of a fixed set of variables

� Goal test defined by constraints on variable values

� Backtracking = depth-first search with incremental constraint checks

� Ordering: variable and value choice heuristics help significantly

� Filtering: forward checking, arc consistency prevent assignments that guarantee
later failure

� Today:

� Structure: Disconnected and tree-structured CSPs are efficient

� Iterative improvement: min-conflicts is usually effective in practice

13

3

Iterative Algorithms for CSPs

� Local search methods: typically work with “complete”
states, i.e., all variables assigned

� To apply to CSPs:
� Start with some assignment with unsatisfied constraints

� Operators reassign variable values

� No fringe! Live on the edge.

� Variable selection: randomly select any conflicted
variable

� Value selection by min-conflicts heuristic:
� Choose value that violates the fewest constraints
� I.e., hill climb with h(n) = total number of violated constraints

14

Example: 4-Queens

� States: 4 queens in 4 columns (44 = 256 states)
� Operators: move queen in column
� Goal test: no attacks
� Evaluation: c(n) = number of attacks

16

Performance of Min-Conflicts

� Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)

� The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

17

Hill Climbing

� Simple, general idea:
� Start wherever

� Always choose the best neighbor

� If no neighbors have better scores than
current, quit

� Why can this be a terrible idea?
� Complete?

� Optimal?

� What’s good about it?

18

Hill Climbing Diagram

� Random restarts?
� Random sideways steps?

19

Simulated Annealing

� Idea: Escape local maxima by allowing downhill moves

� But make them rarer as time goes on

20

4

CSPs Summary

� CSPs are a special kind of search problem:

� States defined by values of a fixed set of variables

� Goal test defined by constraints on variable values

� Backtracking = depth-first search with incremental constraint checks

� Ordering: variable and value choice heuristics help significantly

� Filtering: forward checking, arc consistency prevent assignments that

guarantee later failure

� Structure: Disconnected and tree-structured CSPs are efficient

� Iterative improvement: min-conflicts is usually effective in practice

21 22

Intermezzo: A* heuristics --- 8 puzzle

� What are the states?

� What are the actions?

� What is the cost?

Intermezzo: A* heuristics --- 8 puzzle

� Number of misplaced tiles: Admissible or not?

� What if we had an easier 8-puzzle where any tile could
slide any direction at any time, ignoring other tiles and
used their total Manhattan distance. Admissible or not?

� What if we had a piece of code that could quickly find a
sequence of actions that reaches the goal state. Is the
number of actions returned by that piece of code an
admissible heuristic?

Intermezzo: A* heuristics --- pacman

trying to eat all food pellets

� Consider an algorithm that takes the distance to the closest food pellet, say
at (x,y). Then it adds the distance between (x,y) and the closest food pellet

to (x,y), and continues this process until no pellets are left, each time
calculating the distance from the last pellet. Is this heuristic admissible?

� What if we used the Manhattan distance rather than distance in the maze in

the above procedure?

25

Intermezzo: A* heuristics

� A particular procedure to quickly find a

perhaps suboptimal solution to the search
problem is in general not admissible.

� It is only admissible if it always finds the

optimal solution.

� A particular procedure to quickly find a
perhaps suboptimal solution to a relaxed

version of the search problem need not be

admissible.

� It will be admissible if it always finds the
optimal solution to the relaxed problem. 26

5

27

Game Playing State-of-the-Art

� Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. Checkers is now solved!

� Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue examined 200 million positions per
second, used very sophisticated evaluation and undisclosed methods for
extending some lines of search up to 40 ply. Current programs are even
better, if less historic.

� Othello: Human champions refuse to compete against computers, which
are too good.

� Go: Human champions are beginning to be challenged by machines,
though the best humans still beat the best machines. In go, b > 300, so
most programs use pattern knowledge bases to suggest plausible moves,
along with aggressive pruning.

� Pacman: unknown

28

GamesCrafters

http://gamescrafters.berkeley.edu/

Run by Dan Garcia. Full for Spring. Check in with him for Fall 2010.

29

Game Playing

� Many different kinds of games!

� Axes:

� Deterministic or stochastic?

� One, two, or more players?

� Perfect information (can you see the state)?

� Want algorithms for calculating a strategy
(policy) which recommends a move in each state

31

Simple two-player game example

32

8 2 5 6

max

min

